Sains Malaysiana 53(7)(2024): 1559-1574
http://doi.org/10.17576/jsm-2024-5307-07
Antarctic Spore-Forming Microorganisms
from Deception Island Inhibit the Growth of Various Bacterial Strains
(Mikroorganisma Pembentuk Spora Antartika dari Pulau Deception Merencat
Pertumbuhan Pelbagai Strain Bakteria)
SHEAU TING, YONG1, CHUI PENG-TEOH1, PARIS
LEONARDO LAVIN2, MARCELO A. GONZÁLEZ3& CLEMENTE MICHAEL
VUI LING WONG1,*
1Biotechnology Research Institute, Universiti Malaysia Sabah, 88400 Kota
Kinabalu, Sabah, Malaysia
2Departamento de Biotecnologia, Facultad de Ciencias del Mar y Recursos
Biologicos, Universidad de Antofagasta, 601 Avenida Angamos, Antofagasta
1270300, Chile
3Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas,
Chile
Diserahkan:
17 April 2023/Diterima: 31 Mei 2024
Abstract
Antarctic microbes have evolved and adapted unique strategies to survive
in the harsh polar environment. Apart from the ability to adapt to the low
nutrient soil content and extremely dry and cold polar environment, a
particular strategy used by Antarctic bacteria is the production of
antimicrobial compounds that can eliminate rivals in the same niche, giving
them a competitive edge over other microbes. In contrast, it is unclear whether
spore-forming microbes possess similar antimicrobial properties as one of their
survival strategies, especially those from the Antarctic volcanic Deception
island in the West Antarctic. Hence, this study aims to isolate and
characterize the spore-forming microbes in Deception Island, Antarctica, as
well as to identify the ones that are equipped with the ability to inhibit
other microorganisms. Microbes were isolated using various growth media and
were segregated into clusters based on their random amplified polymorphic DNA
(RAPD) fingerprints. A total of 90 strains were isolated and clustered into 30
groups at a similarity of 60%. Representative strains from each cluster were
assayed for antimicrobial activities against 13 Gram-positive and Gram-negative
test bacteria comprising human pathogens. Twenty-five strains exhibited the
ability to inhibit at least one test bacterium. The four strains, A60, Im31,
Im32 and Im33 that showed the strongest inhibitory activities were subjected to
16S or 18S rDNA sequencing and analysis to identify them. They were identified
as Pseudogymnoascus, Bacillus, Leohumicola, and Talaromyces spp. The ability of the aforementioned microbes to thrive in harsh
environments and compete with fierce competitors for scarce nutrients is
probably due to their ability to produce antimicrobial compounds that target
and kill their rivals.
Keywords: Bacillus; Leohumicola; maritime
Antarctic; Pseudogymnoascus; Talaromyces
Abstrak
Mikrob Antartika telah melalui evolusi dan dilengkapi dengan beberapa
strategi adaptasi yang unik untuk bertahan hidup dalam persekitaran kutub yang
amat mencabar. Selain daripada keupayaan untuk menyesuaikan diri dengan
persekitaran kutub yang mempunyai kandungan nutrien tanah yang rendah,
persekitaran yang kering dan sejuk melampau, satu strategi yang digunakan oleh
bakteria Antartika ialah dengan penghasilan sebatian antimikrob yang boleh
menghapuskan saingan dalam nic yang sama, memberikan mereka kelebihan daya
saing berbanding mikrob lain. Namun begitu, tidak jelas sama ada mikrob
pembentuk spora mempunyai sifat penghasilan antimikrob yang sama sebagai salah
satu strategi kemandirian hidup mereka terutamanya di pulau gunung berapi
Deception di Antartika Barat. Oleh itu, kajian ini bertujuan untuk memencilkan
dan mencirikan mikrob pembentuk spora dari Pulau Deception, Antartika serta mengenal
pasti mikrob yang dilengkapi dengan keupayaan untuk merencat mikroorganisma
lain. Mikrob telah dipencilkan menggunakan pelbagai media pertumbuhan dan
diasingkan ke dalam kelompok berdasarkan cap jari DNA polimorfik yang
diamplifikasi secara rawak (RAPD). Sebanyak 90 strain telah diasingkan dan
dikelompokkan kepada 30 kumpulan dengan persamaan 60%. Strain perwakilan
daripada setiap kluster telah disaring bagi aktiviti antimikrob terhadap 13
patogen Gram-positif dan Gram-negatif. Dua puluh lima strain menunjukkan
keupayaan untuk merencat sekurang-kurangnya satu bakteria ujian. Empat strain,
A60, Im31, Im32 dan Im33 yang menunjukkan aktiviti perencatan paling ketara
telah dikenal pasti identiti mereka melalui proses penjujukan dan analisis rDNA
16S atau 18S mereka. Mereka adalah Pseudogymnoascus,
Bacillus, Leohumicola dan Talaromyces spp. Keupayaan mikrob tersebut untuk hidup dengan berjaya dalam
persekitaran yang mencabar dan bersaing dengan sengit dengan pencabar untuk
mendapatkan nutrien yang terhad mungkin disebabkan oleh sebatian antimikrob
yang dihasilkan oleh mereka untuk menyasarkan dan membunuh pesaing mereka.
Kata kunci: Bacillus; Leohumicola;
maritim Antarctic; Pseudogymnoascus; Talaromyces
RUJUKAN
Adeoyo, O.R., Pletschke, B.I. & Dames, J.F. 2019. Molecular
identification and antibacterial properties of an ericoid-associated
mycorrhizal fungus. BMC Microbiology 19(1): 178.
Albores, S., Sanguinedo, P., Held, B.H., Cerdeiras, M.P. &
Blanchette, R.A. 2018. Biodiversity and antimicrobial activity of Antarctic
fungi from the Fildes Peninsula, King George Island. Sydowia 70: 185-192.
Astudillo-Barraza, D., Oses, R., Henríquez-Castillo, C., Vui Ling Wong,
C.M., Pérez-Donoso, J.M., Purcarea, C., Fukumasu, H., Fierro-Vásquez, N.,
Pérez, P.A. & Lavin, P. 2023. Apoptotic induction in human cancer cell
lines by antimicrobial compounds from Antarctic Streptomyces fildesensis (INACH3013). Fermentation 9(2): 129.
Bañón, M., Justel, A., Velázquez, D. & Quesada,
A. 2013. Regional weather survey on Byers Peninsula, Livingston Island, South
Shetland Islands, Antarctica. Antarctic
Science 25(2): 146-156.
Capella-Gutiérrez, S., Silla-Martínez, J.M. &
Gabaldón, T. 2009. trimAl: A tool for automated alignment trimming in
large-scale phylogenetic analyses. Bioinformatics 25(15): 972-973.
Carrión, O., Miñana-Galbis, D., Montes, M.J. & Mercadé, E. 2011. Pseudomonas deceptionensis sp. nov., a
psychrotolerant bacterium from the Antarctic. International Journal of Systematic and Evolutionary Microbiology 61: 2401-2405.
Casanueva, A., Tuffin, M., Cary, C. & Cowan, D.A. 2010. Molecular
adaptations to psychrophily: The impact of ‘omic’ technologies. Trends in Microbiology 18: 374-381.
Cavalcante, S.B., da Silva, A.F., Pradi, L., Lacerda, J.W.F., Tizziani,
T., Sandjo, L.P., Modesto, L.R., de Freitas, A.C.O., Steindel, M., Stoco, P.H.
& Duarte, R.T.D. 2024. Antarctic fungi produce pigment with antimicrobial
and antiparasitic activities. Brazilian
Journal of Microbiology 55: 1251-1263.
Chattopadhyay, M. & Jagannadham, M. 2001. Maintenance of membrane
fluidity in Antarctic bacteria. Polar
Biology 24: 386-388.
Cheah, Y., Lee, L.H., Chieng, C.C.Y. & Wong, C.M.V.L. 2015.
Isolation, identification and screening of Actinobacteria in volcanic soil of
Deception Island (the Antarctic) for antimicrobial metabolites. Polish Polar Research 36: 67-78.
Cowan, D.A., Makhalanyane, T.P., Dennis, P.G. & Hopkins, D.W. 2014.
Microbial ecology and biogeochemistry of continental Antarctic soils. Frontiers in Microbiology https://doi.org/10.3389/fmicb.2014.00154
de Menezes, G.C.A., Amorim, S.S., Gonçalves, V.N., Godinho, V.M.,
Simões, J.C., Rosa, C.A. & Rosa, L.H. 2019. Diversity, distribution, and
ecology of fungi in the seasonal snow of Antarctica. Microorganisms 7(10): 445.
Decho, A.W. 1990. Microbial exopolymer secretions in ocean environments:
their role (s) in test webs and marine processes. Oceanography and Marine Biology: An Annual Review 28: 73-153.
Díaz, G.A., Latorre, B.A.,
Ferrada, E. & Lolas, M. 2019. Identification and characterization of Diplodia mutila, D. seriata, Phacidiopycnis
washingtonensis and Phacidium lacerum obtained from apple (Malus x domestica) fruit rot in Maule Region, Chile. European Journal of Plant Pathology 153:
1259-1273.
Dieser, M., Greenwood, M. & Foreman, C.M. 2010. Carotenoid
pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand
environmental stresses. Arctic,
Antarctic, and Alpine Research 42: 396-405.
Dix, N.J. & Webster, J. 1995. Fungi of extreme environments. Fungal Ecology. Dordrecht: Springer. pp.
322-340.
Dong, N., Di, Z., Yu, Y., Yuan, M., Zhang, X. & Li, H. 2013.
Extracellular enzyme activity and antimicrobial activity of culturable bacteria
isolated from soil of Grove Mountains, East Antarctica. Wei Sheng Wu Xue Bao (Acta Microbiologica Sinica) 53: 1295-1306.
El-Fiky, Z.A., Mansour, S.R., El-Zawhary, Y. & Ismail, S. 2003.
DNA-fingerprints and phylogenetic studies of some chitinolytic actinomycete
isolates. Biotechnology 2: 131-140.
Furbino, L.E., Godinho, V.M., Santiago, I.F., Pellizari, F.M., Alves,
T.M.A., Zani, C.L., Junior, P.A.S., Romanha, A.J., Carvalho, A.G.O., Gil,
L.H.V.G., Rosa, C.A., Minnis, A.M. & Rosa, L.H. 2014. Diversity patterns,
ecology and biological activities of fungal communities associated with the
endemic macroalgae across the Antarctic Peninsula. Microbial Ecology 67: 775-787.
Gesheva, V. 2012. Biological potential of soil populations in two
Shetland islands, Livingston and Deception. The
Cyprus Journal of Sciences 10: 111-118.
Hayakawa, M. & Nonomura, H. 1989. A new method for the intensive
isolation of actinomycetes from soil. Actinomycetologica 3: 95-104.
Held, B.W., Arenz, B.E. & Blanchette, R.A. 2011. Factors influencing
the deterioration of historic structures at Deception Island, Antarctica. In Polar Settlements - Location, Techniques and
Conservation, edited by Barr S.
& Chaplin P. Oslo: International Polar Heritage Committee of ICOMOS. pp.
35-43.
Herbold, C.W., Mcdonald, I.R. & Cary, S.C. 2014. Microbial ecology
of geothermal habitats in Antarctica. In Antarctic
Terrestrial Microbiology, edited by Cowan, D.A. Berlin Heidelberg:
Springer. pp. 181-215.
Hong, K., Gao, A.H., Xie, Q.Y., Gao, H.G., Zhuang, L., Lin, H.P., Yu,
H.P., Li, J., Yao, X.S., Goodfellow, M. & Ruan, J.S. 2009. Actinomycetes
for marine drug discovery isolated from mangrove soils and plants in China. Marine Drugs 7: 24-44.
Khanna, M., Solanki, R., Lal, R. & Narendra, A. 2011. Selective
isolation of rare actinomycetes producing novel antimicrobial compounds. International Journal of Advanced
Biotechnology and Research 2: 357-375.
Latter, P.M. & Heal, O.W. 1971. A preliminary study of the growth of
fungi and bacteria from temperate and Antarctic soils in relation to
temperature. Soil Biology and
Biochemistry 3(4): 365-379.
Lezcano, M.Á., Moreno-Paz, M., Carrizo, D., Prieto-Ballesteros, O.,
Fernández-Martínez, M. Á., Sánchez-García, L., Blanco, Y., Puente-Sánchez, F.,
de Diego-Castilla, G., García-Villadangos, M. & Fairén, A.G. 2019.
Biomarker profiling of microbial mats in the geothermal band of Cerro Caliente,
Deception Island (Antarctica): Life at the edge of heat and cold. Astrobiology 19(12): 1490-1504.
Llarch, A., Logan, N.A., Castellví, J., Prieto, M.J. & Guinea, J.
1997. Isolation and characterization of thermophilic Bacillus spp. from geothermal environments on Deception Island,
South Shetland Archipelago. Microbial
Ecology 34: 58-65.
Lo Giudice, A., Bruni, V. & Michaud, L. 2007. Characterization of
Antarctic psychrotrophic bacteria with antibacterial activities against
terrestrial microorganisms. Journal of
Basic Microbiology 47(6): 496-505.
Lo Giudice, A., Brilli, M., Bruni, V., De Domenico, M., Fani, R. &
Michaud, L. 2007. Bacterium–bacterium inhibitory interactions among
psychrotrophic bacteria isolated from Antarctic seawater (Terra Nova Bay, Ross
Sea). FEMS Microbiology Ecology 60(3): 383-396.
Logan, N.A., Lebbe, L., Hoste, B., Goris, J., Forsyth, G., Heyndrickx,
M., Murray, B.L., Syme, N., Wynn-Williams, D.D. & De Vos, P. 2000. Aerobic
endospore-forming bacteria from geothermal environments in northern Victoria
Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the
proposal of Bacillus fumarioli sp.
nov. International Journal of Systematic
and Evolutionary Microbiology 50: 1741-1753.
Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D.,
Von Haeseler, A. & Lanfear, R. 2020. IQ-TREE 2: New models and efficient
methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37(5): 1530-1534.
Morita, R.Y. 1975. Psychrophilic bacteria. Bacteriological Reviews 39: 144-167.
Netzker, T., Fischer, J., Weber, J., Mattern, D.J., König, C.C.,
Valiante, V., Schroeckh, V. & Brakhage, A.A. 2015. Microbial communication
leading to the activation of silent fungal secondary metabolite gene clusters. Frontiers in Microbiology 6: 299.
https://doi.org/10.3389/fmicb.2015.00299
Nicolaus, B., Manca, M.C., Lama, L., Esposito, E. & Gambacorta, A.
2001. Lipid modulation by environmental stresses in two models of extremophiles
isolated from Antarctica. Polar Biology 24: 1-8.
Núñez-Montero, K., Lamilla, C., Abanto, M., Maruyama, F., Jorquera,
M.A., Santos, A., Martinez-Urtaza, J. & Barrientos, L. 2019. Antarctic Streptomyces fildesensis So13. 3 strain
as a promising source for antimicrobials discovery. Scientific Reports 9(1): 7488.
O'Brien, A., Sharp, R., Russell, N.J. & Roller, S. 2004. Antarctic
bacteria inhibit the growth of test-borne microorganisms at low temperatures. FEMS Microbiology Ecology 48: 157-167.
Purić, J., Vieira, G., Cavalca, L.B., Sette, L.D., Ferreira, H.,
Vieira, M.L.C. & Sass, D.C. 2018. Activity of Antarctic fungi extracts
against phytopathogenic bacteria. Letters
in Applied Microbiology 66(6): 530-536.
Schoch, C.L., Ciufo, S., Domrachev, M., Hotton, C.L., Kannan, S.,
Khovanskaya, R., Leipe, D., Mcveigh, R., O’Neill, K., Robbertse, B., Sharma,
S., Soussov, V., Sullivan, J.P., Sun, L., Turner, S. & Karsch-Mizrachi, I.
2020. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020. https://doi.org/10.1093/database/baaa062
Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L.,
Levesque, C.A., Chen, W. & Fungal Barcoding Consortium. 2012. Nuclear
ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode
marker for Fungi. Proceedings of the
National Academy of Sciences 109(16): 6241-6246.
Shirling, E.B. & Gottlieb, D. 1966. Methods for characterization of Streptomyces species. International Journal of Systematic
Bacteriology 16: 313-340.
Steinke, K., Mohite, O.S.,
Weber, T. & Kovács, Á.T. 2021. Phylogenetic distribution of secondary
metabolites in the Bacillus subtilis species complex. Msystems 6(2):
e00057-21.
Stefańska, I.,
Kwiecień, E., Górzyńska, M., Sałamaszyńska-Guz, A. &
Rzewuska, M. 2022. RAPD-PCR-based fingerprinting method as a tool for
epidemiological analysis of Trueperella
pyogenes infections. Pathogens 11(5):
562.
Svahn, K.S., Chryssanthou, E., Olsen, B., Bohlin, L. & Göransson, U.
2015. Penicillium nalgiovense Laxa
isolated from Antarctica is a new source of the antifungal metabolite
amphotericin B. Fungal Biology and
Biotechnology 2: 1. https://doi.org/10.1186/s40694-014-0011-x
Tamura, K., Stecher, G. & Kumar, S, 2021. MEGA 11: Molecular
evolutionary genetics analysis version 11. Molecular
Biology and Evolution 38: 3022-3027.
Tomova, I., Gladka, G., Tashyrev, A. & Vasileva-Tonkova, E. 2014.
Isolation, identification and hydrolytic enzyme production of aerobic
heterotrophic bacteria from two Antarctic islands. International Journal of Environmental Sciences 4: 614-625.
Wiseman, M.S., Kim, Y.K.,
Dugan, F.M., Rogers, J.D. & Xiao, C.L. 2016. A new postharvest fruit rot in
apple and pear caused by Phacidium
lacerum. Plant Disease 100(1):
32-39.
Wong, C.M.V.L., Tam, H.K., Alias, S.A., González, M., Rocha, G.G. &
Yévenes, M.D. 2011. Pseudomonas and Pedobacter
isolates from
King George Island (Antarctica) inhibited the growth of test−borne
pathogens.
Polish Polar
Research 32: 3-14.
Wynn-Williams, D.D. 1996. Antarctic microbial diversity: The basis of
polar ecosystem processes. Biodiversity
and Conservation 5: 1271-1293.
Yong, S.T., Lavin, P.L., González, M.A. & Wong, C.M.V.L. 2023. A Talaromyces species with strong
antimicrobial activity from Deception Island. Sains Malaysiana 52(1): 83-93.
Zheng, L., Yang, K., Liu, J., Sun, M., Zhu, J., Lv, M., Kang, D., Wang,
W., Xing, M. & Li, Z. 2016. Screening of microorganisms from Antarctic
surface water and cytotoxicity metabolites from Antarctic microorganisms. Test Science and Nutrition 4: 198-206.
*Pengarang untuk surat-menyurat, email: michaelw@ums.edu.my
|